If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2d^2+10d+6=0
a = 2; b = 10; c = +6;
Δ = b2-4ac
Δ = 102-4·2·6
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{13}}{2*2}=\frac{-10-2\sqrt{13}}{4} $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{13}}{2*2}=\frac{-10+2\sqrt{13}}{4} $
| v/6-32=34 | | -8c-4+9=27 | | 19v+v-16v+4v-6v=20 | | F(x)=2x2+6x-8 | | x+(-25)=-20 | | 20h-8h+-10h=16 | | y+45=y-2 | | -267=7(7m+1)-3m | | 5(2x+1)=9(x+5)+5 | | 2.5+x=7.8 | | 3x2−16x−75=0 | | 4h+3h-2h-4=16 | | Y=950x+5 | | 2(4x+7)=-42+48 | | 10+6g=110 | | 16-5x=8+5x | | 2x+16=−2(4−4x) | | 22=-7+3(n-9) | | -3p-2=8 | | 3(d-16)=9 | | 2r−6+5r=3−r+7 | | 0.8x+3.6=6 | | 7w+-6w=-12 | | 3=k/7-3 | | -12h+20h-12h-15h=19 | | 2x-14+5x+26=90 | | 6.2r−6+5r=3−r+7 | | 32=c2 | | 7q-6q=15 | | -8x+12/4=2 | | 9x+8x=1 | | -35=-y/9 |